Metamath Proof Explorer


Theorem csbie2g

Description: Conversion of implicit substitution to explicit class substitution. This version of csbie avoids a disjointness condition on x , A and x , D by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016)

Ref Expression
Hypotheses csbie2g.1 x = y B = C
csbie2g.2 y = A C = D
Assertion csbie2g A V A / x B = D

Proof

Step Hyp Ref Expression
1 csbie2g.1 x = y B = C
2 csbie2g.2 y = A C = D
3 df-csb A / x B = z | [˙A / x]˙ z B
4 1 eleq2d x = y z B z C
5 2 eleq2d y = A z C z D
6 4 5 sbcie2g A V [˙A / x]˙ z B z D
7 6 abbi1dv A V z | [˙A / x]˙ z B = D
8 3 7 eqtrid A V A / x B = D