Metamath Proof Explorer


Theorem csbie2t

Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 ). (Contributed by NM, 3-Sep-2007) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbie2t.1 A V
csbie2t.2 B V
Assertion csbie2t x y x = A y = B C = D A / x B / y C = D

Proof

Step Hyp Ref Expression
1 csbie2t.1 A V
2 csbie2t.2 B V
3 nfa1 x x y x = A y = B C = D
4 nfcvd x y x = A y = B C = D _ x D
5 1 a1i x y x = A y = B C = D A V
6 nfa2 y x y x = A y = B C = D
7 nfv y x = A
8 6 7 nfan y x y x = A y = B C = D x = A
9 nfcvd x y x = A y = B C = D x = A _ y D
10 2 a1i x y x = A y = B C = D x = A B V
11 2sp x y x = A y = B C = D x = A y = B C = D
12 11 impl x y x = A y = B C = D x = A y = B C = D
13 8 9 10 12 csbiedf x y x = A y = B C = D x = A B / y C = D
14 3 4 5 13 csbiedf x y x = A y = B C = D A / x B / y C = D