Metamath Proof Explorer


Theorem csbied

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by Mario Carneiro, 13-Oct-2016) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypotheses csbied.1 φ A V
csbied.2 φ x = A B = C
Assertion csbied φ A / x B = C

Proof

Step Hyp Ref Expression
1 csbied.1 φ A V
2 csbied.2 φ x = A B = C
3 df-csb A / x B = y | [˙A / x]˙ y B
4 2 eleq2d φ x = A z B z C
5 1 4 sbcied φ [˙A / x]˙ z B z C
6 5 alrimiv φ z [˙A / x]˙ z B z C
7 df-clab z y | [˙A / x]˙ y B z y [˙A / x]˙ y B
8 eleq1w y = z y B z B
9 8 sbcbidv y = z [˙A / x]˙ y B [˙A / x]˙ z B
10 9 sbievw z y [˙A / x]˙ y B [˙A / x]˙ z B
11 7 10 bitr2i [˙A / x]˙ z B z y | [˙A / x]˙ y B
12 11 bibi1i [˙A / x]˙ z B z C z y | [˙A / x]˙ y B z C
13 12 biimpi [˙A / x]˙ z B z C z y | [˙A / x]˙ y B z C
14 6 13 sylg φ z z y | [˙A / x]˙ y B z C
15 dfcleq y | [˙A / x]˙ y B = C z z y | [˙A / x]˙ y B z C
16 14 15 sylibr φ y | [˙A / x]˙ y B = C
17 3 16 eqtrid φ A / x B = C