Metamath Proof Explorer


Theorem csbiedf

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbiedf.1 x φ
csbiedf.2 φ _ x C
csbiedf.3 φ A V
csbiedf.4 φ x = A B = C
Assertion csbiedf φ A / x B = C

Proof

Step Hyp Ref Expression
1 csbiedf.1 x φ
2 csbiedf.2 φ _ x C
3 csbiedf.3 φ A V
4 csbiedf.4 φ x = A B = C
5 4 ex φ x = A B = C
6 1 5 alrimi φ x x = A B = C
7 csbiebt A V _ x C x x = A B = C A / x B = C
8 3 2 7 syl2anc φ x x = A B = C A / x B = C
9 6 8 mpbid φ A / x B = C