Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
csbief
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit substitution into a
class. (Contributed by NM , 26-Nov-2005) (Revised by Mario Carneiro , 13-Oct-2016)
Ref
Expression
Hypotheses
csbief.1
⊢ A ∈ V
csbief.2
⊢ Ⅎ _ x C
csbief.3
⊢ x = A → B = C
Assertion
csbief
⊢ ⦋ A / x ⦌ B = C
Proof
Step
Hyp
Ref
Expression
1
csbief.1
⊢ A ∈ V
2
csbief.2
⊢ Ⅎ _ x C
3
csbief.3
⊢ x = A → B = C
4
2
a1i
⊢ A ∈ V → Ⅎ _ x C
5
4 3
csbiegf
⊢ A ∈ V → ⦋ A / x ⦌ B = C
6
1 5
ax-mp
⊢ ⦋ A / x ⦌ B = C