Metamath Proof Explorer


Theorem csbief

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbief.1 AV
csbief.2 _xC
csbief.3 x=AB=C
Assertion csbief A/xB=C

Proof

Step Hyp Ref Expression
1 csbief.1 AV
2 csbief.2 _xC
3 csbief.3 x=AB=C
4 2 a1i AV_xC
5 4 3 csbiegf AVA/xB=C
6 1 5 ax-mp A/xB=C