Metamath Proof Explorer


Theorem csbima12

Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbima12 A / x F B = A / x F A / x B

Proof

Step Hyp Ref Expression
1 csbeq1 y = A y / x F B = A / x F B
2 csbeq1 y = A y / x F = A / x F
3 csbeq1 y = A y / x B = A / x B
4 2 3 imaeq12d y = A y / x F y / x B = A / x F A / x B
5 1 4 eqeq12d y = A y / x F B = y / x F y / x B A / x F B = A / x F A / x B
6 vex y V
7 nfcsb1v _ x y / x F
8 nfcsb1v _ x y / x B
9 7 8 nfima _ x y / x F y / x B
10 csbeq1a x = y F = y / x F
11 csbeq1a x = y B = y / x B
12 10 11 imaeq12d x = y F B = y / x F y / x B
13 6 9 12 csbief y / x F B = y / x F y / x B
14 5 13 vtoclg A V A / x F B = A / x F A / x B
15 csbprc ¬ A V A / x F B =
16 csbprc ¬ A V A / x B =
17 16 imaeq2d ¬ A V A / x F A / x B = A / x F
18 ima0 A / x F =
19 17 18 eqtr2di ¬ A V = A / x F A / x B
20 15 19 eqtrd ¬ A V A / x F B = A / x F A / x B
21 14 20 pm2.61i A / x F B = A / x F A / x B