Metamath Proof Explorer


Theorem csbmpt2

Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019)

Ref Expression
Assertion csbmpt2 A V A / x y Y Z = y Y A / x Z

Proof

Step Hyp Ref Expression
1 csbmpt12 A V A / x y Y Z = y A / x Y A / x Z
2 csbconstg A V A / x Y = Y
3 2 mpteq1d A V y A / x Y A / x Z = y Y A / x Z
4 1 3 eqtrd A V A / x y Y Z = y Y A / x Z