Metamath Proof Explorer


Theorem csbnest1g

Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006) (Proof shortened by Mario Carneiro, 11-Nov-2016)

Ref Expression
Assertion csbnest1g A V A / x B / x C = A / x B / x C

Proof

Step Hyp Ref Expression
1 nfcsb1v _ x y / x C
2 1 ax-gen y _ x y / x C
3 csbnestgfw A V y _ x y / x C A / x B / y y / x C = A / x B / y y / x C
4 2 3 mpan2 A V A / x B / y y / x C = A / x B / y y / x C
5 csbcow B / y y / x C = B / x C
6 5 csbeq2i A / x B / y y / x C = A / x B / x C
7 csbcow A / x B / y y / x C = A / x B / x C
8 4 6 7 3eqtr3g A V A / x B / x C = A / x B / x C