Metamath Proof Explorer


Theorem csbnestg

Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbnestgw when possible. (Contributed by NM, 23-Nov-2005) (Proof shortened by Mario Carneiro, 10-Nov-2016) (New usage is discouraged.)

Ref Expression
Assertion csbnestg A V A / x B / y C = A / x B / y C

Proof

Step Hyp Ref Expression
1 nfcv _ x C
2 1 ax-gen y _ x C
3 csbnestgf A V y _ x C A / x B / y C = A / x B / y C
4 2 3 mpan2 A V A / x B / y C = A / x B / y C