Metamath Proof Explorer


Theorem csbnestgw

Description: Nest the composition of two substitutions. Version of csbnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion csbnestgw A V A / x B / y C = A / x B / y C

Proof

Step Hyp Ref Expression
1 nfcv _ x C
2 1 ax-gen y _ x C
3 csbnestgfw A V y _ x C A / x B / y C = A / x B / y C
4 2 3 mpan2 A V A / x B / y C = A / x B / y C