Metamath Proof Explorer


Theorem csbopab

Description: Move substitution into a class abstraction. Version of csbopabgALT without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbopab A / x y z | φ = y z | [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 csbeq1 w = A w / x y z | φ = A / x y z | φ
2 dfsbcq2 w = A w x φ [˙A / x]˙ φ
3 2 opabbidv w = A y z | w x φ = y z | [˙A / x]˙ φ
4 1 3 eqeq12d w = A w / x y z | φ = y z | w x φ A / x y z | φ = y z | [˙A / x]˙ φ
5 vex w V
6 nfs1v x w x φ
7 6 nfopab _ x y z | w x φ
8 sbequ12 x = w φ w x φ
9 8 opabbidv x = w y z | φ = y z | w x φ
10 5 7 9 csbief w / x y z | φ = y z | w x φ
11 4 10 vtoclg A V A / x y z | φ = y z | [˙A / x]˙ φ
12 csbprc ¬ A V A / x y z | φ =
13 sbcex [˙A / x]˙ φ A V
14 13 con3i ¬ A V ¬ [˙A / x]˙ φ
15 14 nexdv ¬ A V ¬ z [˙A / x]˙ φ
16 15 nexdv ¬ A V ¬ y z [˙A / x]˙ φ
17 opabn0 y z | [˙A / x]˙ φ y z [˙A / x]˙ φ
18 17 necon1bbii ¬ y z [˙A / x]˙ φ y z | [˙A / x]˙ φ =
19 16 18 sylib ¬ A V y z | [˙A / x]˙ φ =
20 12 19 eqtr4d ¬ A V A / x y z | φ = y z | [˙A / x]˙ φ
21 11 20 pm2.61i A / x y z | φ = y z | [˙A / x]˙ φ