Metamath Proof Explorer


Theorem csbopabgALT

Description: Move substitution into a class abstraction. Version of csbopab with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007) (Proof shortened by Mario Carneiro, 17-Nov-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion csbopabgALT A V A / x y z | φ = y z | [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 csbeq1 w = A w / x y z | φ = A / x y z | φ
2 dfsbcq2 w = A w x φ [˙A / x]˙ φ
3 2 opabbidv w = A y z | w x φ = y z | [˙A / x]˙ φ
4 1 3 eqeq12d w = A w / x y z | φ = y z | w x φ A / x y z | φ = y z | [˙A / x]˙ φ
5 vex w V
6 nfs1v x w x φ
7 6 nfopab _ x y z | w x φ
8 sbequ12 x = w φ w x φ
9 8 opabbidv x = w y z | φ = y z | w x φ
10 5 7 9 csbief w / x y z | φ = y z | w x φ
11 4 10 vtoclg A V A / x y z | φ = y z | [˙A / x]˙ φ