Metamath Proof Explorer


Theorem csbopeq1a

Description: Equality theorem for substitution of a class A for an ordered pair <. x , y >. in B (analogue of csbeq1a ). (Contributed by NM, 19-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion csbopeq1a A = x y 1 st A / x 2 nd A / y B = B

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 op2ndd A = x y 2 nd A = y
4 3 eqcomd A = x y y = 2 nd A
5 csbeq1a y = 2 nd A B = 2 nd A / y B
6 4 5 syl A = x y B = 2 nd A / y B
7 1 2 op1std A = x y 1 st A = x
8 7 eqcomd A = x y x = 1 st A
9 csbeq1a x = 1 st A 2 nd A / y B = 1 st A / x 2 nd A / y B
10 8 9 syl A = x y 2 nd A / y B = 1 st A / x 2 nd A / y B
11 6 10 eqtr2d A = x y 1 st A / x 2 nd A / y B = B