Metamath Proof Explorer


Theorem csbov123

Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbov123 A / x B F C = A / x B A / x F A / x C

Proof

Step Hyp Ref Expression
1 csbeq1 y = A y / x B F C = A / x B F C
2 csbeq1 y = A y / x F = A / x F
3 csbeq1 y = A y / x B = A / x B
4 csbeq1 y = A y / x C = A / x C
5 2 3 4 oveq123d y = A y / x B y / x F y / x C = A / x B A / x F A / x C
6 1 5 eqeq12d y = A y / x B F C = y / x B y / x F y / x C A / x B F C = A / x B A / x F A / x C
7 vex y V
8 nfcsb1v _ x y / x B
9 nfcsb1v _ x y / x F
10 nfcsb1v _ x y / x C
11 8 9 10 nfov _ x y / x B y / x F y / x C
12 csbeq1a x = y F = y / x F
13 csbeq1a x = y B = y / x B
14 csbeq1a x = y C = y / x C
15 12 13 14 oveq123d x = y B F C = y / x B y / x F y / x C
16 7 11 15 csbief y / x B F C = y / x B y / x F y / x C
17 6 16 vtoclg A V A / x B F C = A / x B A / x F A / x C
18 csbprc ¬ A V A / x B F C =
19 df-ov A / x B A / x F A / x C = A / x F A / x B A / x C
20 csbprc ¬ A V A / x F =
21 20 fveq1d ¬ A V A / x F A / x B A / x C = A / x B A / x C
22 0fv A / x B A / x C =
23 21 22 eqtrdi ¬ A V A / x F A / x B A / x C =
24 19 23 eqtr2id ¬ A V = A / x B A / x F A / x C
25 18 24 eqtrd ¬ A V A / x B F C = A / x B A / x F A / x C
26 17 25 pm2.61i A / x B F C = A / x B A / x F A / x C