Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
csbov12g
Next ⟩
csbov1g
Metamath Proof Explorer
Ascii
Unicode
Theorem
csbov12g
Description:
Move class substitution in and out of an operation.
(Contributed by
NM
, 12-Nov-2005)
Ref
Expression
Assertion
csbov12g
⊢
A
∈
V
→
⦋
A
/
x
⦌
B
F
C
=
⦋
A
/
x
⦌
B
F
⦋
A
/
x
⦌
C
Proof
Step
Hyp
Ref
Expression
1
csbov123
⊢
⦋
A
/
x
⦌
B
F
C
=
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
F
⦋
A
/
x
⦌
C
2
csbconstg
⊢
A
∈
V
→
⦋
A
/
x
⦌
F
=
F
3
2
oveqd
⊢
A
∈
V
→
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
F
⦋
A
/
x
⦌
C
=
⦋
A
/
x
⦌
B
F
⦋
A
/
x
⦌
C
4
1
3
eqtrid
⊢
A
∈
V
→
⦋
A
/
x
⦌
B
F
C
=
⦋
A
/
x
⦌
B
F
⦋
A
/
x
⦌
C