Metamath Proof Explorer


Theorem csbov12g

Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005)

Ref Expression
Assertion csbov12g A V A / x B F C = A / x B F A / x C

Proof

Step Hyp Ref Expression
1 csbov123 A / x B F C = A / x B A / x F A / x C
2 csbconstg A V A / x F = F
3 2 oveqd A V A / x B A / x F A / x C = A / x B F A / x C
4 1 3 eqtrid A V A / x B F C = A / x B F A / x C