Metamath Proof Explorer


Theorem csbov12g

Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005)

Ref Expression
Assertion csbov12g AVA/xBFC=A/xBFA/xC

Proof

Step Hyp Ref Expression
1 csbov123 A/xBFC=A/xBA/xFA/xC
2 csbconstg AVA/xF=F
3 2 oveqd AVA/xBA/xFA/xC=A/xBFA/xC
4 1 3 eqtrid AVA/xBFC=A/xBFA/xC