Metamath Proof Explorer


Theorem csbprg

Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018)

Ref Expression
Assertion csbprg C V C / x A B = C / x A C / x B

Proof

Step Hyp Ref Expression
1 csbun C / x A B = C / x A C / x B
2 csbsng C V C / x A = C / x A
3 csbsng C V C / x B = C / x B
4 2 3 uneq12d C V C / x A C / x B = C / x A C / x B
5 1 4 eqtrid C V C / x A B = C / x A C / x B
6 df-pr A B = A B
7 6 csbeq2i C / x A B = C / x A B
8 df-pr C / x A C / x B = C / x A C / x B
9 5 7 8 3eqtr4g C V C / x A B = C / x A C / x B