Metamath Proof Explorer


Theorem csbres

Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbres A / x B C = A / x B A / x C

Proof

Step Hyp Ref Expression
1 df-res B C = B C × V
2 1 csbeq2i A / x B C = A / x B C × V
3 csbxp A / x C × V = A / x C × A / x V
4 csbconstg A V A / x V = V
5 4 xpeq2d A V A / x C × A / x V = A / x C × V
6 3 5 eqtrid A V A / x C × V = A / x C × V
7 0xp × V =
8 7 a1i ¬ A V × V =
9 csbprc ¬ A V A / x C =
10 9 xpeq1d ¬ A V A / x C × V = × V
11 csbprc ¬ A V A / x C × V =
12 8 10 11 3eqtr4rd ¬ A V A / x C × V = A / x C × V
13 6 12 pm2.61i A / x C × V = A / x C × V
14 13 ineq2i A / x B A / x C × V = A / x B A / x C × V
15 csbin A / x B C × V = A / x B A / x C × V
16 df-res A / x B A / x C = A / x B A / x C × V
17 14 15 16 3eqtr4i A / x B C × V = A / x B A / x C
18 2 17 eqtri A / x B C = A / x B A / x C