Metamath Proof Explorer


Theorem csbsng

Description: Distribute proper substitution through the singleton of a class. csbsng is derived from the virtual deduction proof csbsngVD . (Contributed by Alan Sare, 10-Nov-2012)

Ref Expression
Assertion csbsng A V A / x B = A / x B

Proof

Step Hyp Ref Expression
1 csbab A / x y | y = B = y | [˙A / x]˙ y = B
2 sbceq2g A V [˙A / x]˙ y = B y = A / x B
3 2 abbidv A V y | [˙A / x]˙ y = B = y | y = A / x B
4 1 3 eqtrid A V A / x y | y = B = y | y = A / x B
5 df-sn B = y | y = B
6 5 csbeq2i A / x B = A / x y | y = B
7 df-sn A / x B = y | y = A / x B
8 4 6 7 3eqtr4g A V A / x B = A / x B