Metamath Proof Explorer


Theorem csbtt

Description: Substitution doesn't affect a constant B (in which x is not free). (Contributed by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion csbtt A V _ x B A / x B = B

Proof

Step Hyp Ref Expression
1 df-csb A / x B = y | [˙A / x]˙ y B
2 nfcr _ x B x y B
3 sbctt A V x y B [˙A / x]˙ y B y B
4 2 3 sylan2 A V _ x B [˙A / x]˙ y B y B
5 4 abbi1dv A V _ x B y | [˙A / x]˙ y B = B
6 1 5 eqtrid A V _ x B A / x B = B