Metamath Proof Explorer


Theorem csbvarg

Description: The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbvarg A V A / x x = A

Proof

Step Hyp Ref Expression
1 elex A V A V
2 df-csb y / x x = z | [˙y / x]˙ z x
3 sbcel2gv y V [˙y / x]˙ z x z y
4 3 abbi1dv y V z | [˙y / x]˙ z x = y
5 2 4 eqtrid y V y / x x = y
6 5 elv y / x x = y
7 6 csbeq2i A / y y / x x = A / y y
8 csbcow A / y y / x x = A / x x
9 df-csb A / y y = z | [˙A / y]˙ z y
10 7 8 9 3eqtr3i A / x x = z | [˙A / y]˙ z y
11 sbcel2gv A V [˙A / y]˙ z y z A
12 11 abbi1dv A V z | [˙A / y]˙ z y = A
13 10 12 eqtrid A V A / x x = A
14 1 13 syl A V A / x x = A