Step |
Hyp |
Ref |
Expression |
1 |
|
csbab |
|
2 |
|
sbcex2 |
|
3 |
|
sbcex2 |
|
4 |
|
sbcan |
|
5 |
|
sbcg |
|
6 |
|
sbcan |
|
7 |
|
sbcel2 |
|
8 |
|
sbcel2 |
|
9 |
7 8
|
anbi12i |
|
10 |
6 9
|
bitri |
|
11 |
10
|
a1i |
|
12 |
5 11
|
anbi12d |
|
13 |
|
sbcex |
|
14 |
13
|
con3i |
|
15 |
14
|
intnand |
|
16 |
|
noel |
|
17 |
16
|
a1i |
|
18 |
|
csbprc |
|
19 |
17 18
|
neleqtrrd |
|
20 |
19
|
intnand |
|
21 |
20
|
intnand |
|
22 |
15 21
|
2falsed |
|
23 |
12 22
|
pm2.61i |
|
24 |
4 23
|
bitri |
|
25 |
24
|
exbii |
|
26 |
3 25
|
bitri |
|
27 |
26
|
exbii |
|
28 |
2 27
|
bitri |
|
29 |
28
|
abbii |
|
30 |
1 29
|
eqtri |
|
31 |
|
df-xp |
|
32 |
|
df-opab |
|
33 |
31 32
|
eqtri |
|
34 |
33
|
csbeq2i |
|
35 |
|
df-xp |
|
36 |
|
df-opab |
|
37 |
35 36
|
eqtri |
|
38 |
30 34 37
|
3eqtr4i |
|