Metamath Proof Explorer


Theorem csdfil

Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion csdfil X dom card ω X x 𝒫 X | X x X Fil X

Proof

Step Hyp Ref Expression
1 difeq2 x = y X x = X y
2 1 breq1d x = y X x X X y X
3 2 elrab y x 𝒫 X | X x X y 𝒫 X X y X
4 velpw y 𝒫 X y X
5 4 anbi1i y 𝒫 X X y X y X X y X
6 3 5 bitri y x 𝒫 X | X x X y X X y X
7 6 a1i X dom card ω X y x 𝒫 X | X x X y X X y X
8 simpl X dom card ω X X dom card
9 difid X X =
10 infn0 ω X X
11 10 adantl X dom card ω X X
12 0sdomg X dom card X X
13 12 adantr X dom card ω X X X
14 11 13 mpbird X dom card ω X X
15 9 14 eqbrtrid X dom card ω X X X X
16 difeq2 y = X X y = X X
17 16 breq1d y = X X y X X X X
18 17 sbcieg X dom card [˙X / y]˙ X y X X X X
19 18 adantr X dom card ω X [˙X / y]˙ X y X X X X
20 15 19 mpbird X dom card ω X [˙X / y]˙ X y X
21 sdomirr ¬ X X
22 0ex V
23 difeq2 y = X y = X
24 dif0 X = X
25 23 24 syl6eq y = X y = X
26 25 breq1d y = X y X X X
27 22 26 sbcie [˙ / y]˙ X y X X X
28 27 a1i X dom card ω X [˙ / y]˙ X y X X X
29 21 28 mtbiri X dom card ω X ¬ [˙ / y]˙ X y X
30 simp1l X dom card ω X z X w z X dom card
31 difexg X dom card X w V
32 30 31 syl X dom card ω X z X w z X w V
33 sscon w z X z X w
34 33 3ad2ant3 X dom card ω X z X w z X z X w
35 ssdomg X w V X z X w X z X w
36 32 34 35 sylc X dom card ω X z X w z X z X w
37 domsdomtr X z X w X w X X z X
38 37 ex X z X w X w X X z X
39 36 38 syl X dom card ω X z X w z X w X X z X
40 vex w V
41 difeq2 y = w X y = X w
42 41 breq1d y = w X y X X w X
43 40 42 sbcie [˙w / y]˙ X y X X w X
44 vex z V
45 difeq2 y = z X y = X z
46 45 breq1d y = z X y X X z X
47 44 46 sbcie [˙z / y]˙ X y X X z X
48 39 43 47 3imtr4g X dom card ω X z X w z [˙w / y]˙ X y X [˙z / y]˙ X y X
49 infunsdom X dom card ω X X z X X w X X z X w X
50 49 ex X dom card ω X X z X X w X X z X w X
51 difindi X z w = X z X w
52 51 breq1i X z w X X z X w X
53 50 52 syl6ibr X dom card ω X X z X X w X X z w X
54 53 3ad2ant1 X dom card ω X z X w X X z X X w X X z w X
55 47 43 anbi12i [˙z / y]˙ X y X [˙w / y]˙ X y X X z X X w X
56 44 inex1 z w V
57 difeq2 y = z w X y = X z w
58 57 breq1d y = z w X y X X z w X
59 56 58 sbcie [˙ z w / y]˙ X y X X z w X
60 54 55 59 3imtr4g X dom card ω X z X w X [˙z / y]˙ X y X [˙w / y]˙ X y X [˙ z w / y]˙ X y X
61 7 8 20 29 48 60 isfild X dom card ω X x 𝒫 X | X x X Fil X