| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difeq2 |
|
| 2 |
1
|
breq1d |
|
| 3 |
2
|
elrab |
|
| 4 |
|
velpw |
|
| 5 |
4
|
anbi1i |
|
| 6 |
3 5
|
bitri |
|
| 7 |
6
|
a1i |
|
| 8 |
|
simpl |
|
| 9 |
|
difid |
|
| 10 |
|
infn0 |
|
| 11 |
10
|
adantl |
|
| 12 |
|
0sdomg |
|
| 13 |
12
|
adantr |
|
| 14 |
11 13
|
mpbird |
|
| 15 |
9 14
|
eqbrtrid |
|
| 16 |
|
difeq2 |
|
| 17 |
16
|
breq1d |
|
| 18 |
17
|
sbcieg |
|
| 19 |
18
|
adantr |
|
| 20 |
15 19
|
mpbird |
|
| 21 |
|
sdomirr |
|
| 22 |
|
0ex |
|
| 23 |
|
difeq2 |
|
| 24 |
|
dif0 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
breq1d |
|
| 27 |
22 26
|
sbcie |
|
| 28 |
27
|
a1i |
|
| 29 |
21 28
|
mtbiri |
|
| 30 |
|
simp1l |
|
| 31 |
30
|
difexd |
|
| 32 |
|
sscon |
|
| 33 |
32
|
3ad2ant3 |
|
| 34 |
|
ssdomg |
|
| 35 |
31 33 34
|
sylc |
|
| 36 |
|
domsdomtr |
|
| 37 |
36
|
ex |
|
| 38 |
35 37
|
syl |
|
| 39 |
|
vex |
|
| 40 |
|
difeq2 |
|
| 41 |
40
|
breq1d |
|
| 42 |
39 41
|
sbcie |
|
| 43 |
|
vex |
|
| 44 |
|
difeq2 |
|
| 45 |
44
|
breq1d |
|
| 46 |
43 45
|
sbcie |
|
| 47 |
38 42 46
|
3imtr4g |
|
| 48 |
|
infunsdom |
|
| 49 |
48
|
ex |
|
| 50 |
|
difindi |
|
| 51 |
50
|
breq1i |
|
| 52 |
49 51
|
imbitrrdi |
|
| 53 |
52
|
3ad2ant1 |
|
| 54 |
46 42
|
anbi12i |
|
| 55 |
43
|
inex1 |
|
| 56 |
|
difeq2 |
|
| 57 |
56
|
breq1d |
|
| 58 |
55 57
|
sbcie |
|
| 59 |
53 54 58
|
3imtr4g |
|
| 60 |
7 8 20 29 47 59
|
isfild |
|