Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
|
2 |
1
|
3ad2ant3 |
|
3 |
|
cshwfn |
|
4 |
3
|
3adant3 |
|
5 |
|
cshwrn |
|
6 |
5
|
3adant3 |
|
7 |
|
fnco |
|
8 |
2 4 6 7
|
syl3anc |
|
9 |
|
wrdco |
|
10 |
9
|
3adant2 |
|
11 |
|
simp2 |
|
12 |
|
cshwfn |
|
13 |
10 11 12
|
syl2anc |
|
14 |
|
lenco |
|
15 |
14
|
3adant2 |
|
16 |
15
|
oveq2d |
|
17 |
16
|
fneq2d |
|
18 |
13 17
|
mpbid |
|
19 |
15
|
adantr |
|
20 |
19
|
oveq2d |
|
21 |
20
|
fveq2d |
|
22 |
21
|
fveq2d |
|
23 |
|
wrdfn |
|
24 |
23
|
3ad2ant1 |
|
25 |
24
|
adantr |
|
26 |
|
elfzoelz |
|
27 |
|
zaddcl |
|
28 |
26 11 27
|
syl2anr |
|
29 |
|
elfzo0 |
|
30 |
29
|
simp2bi |
|
31 |
30
|
adantl |
|
32 |
|
zmodfzo |
|
33 |
28 31 32
|
syl2anc |
|
34 |
15
|
oveq2d |
|
35 |
34
|
eleq1d |
|
36 |
35
|
adantr |
|
37 |
33 36
|
mpbird |
|
38 |
|
fvco2 |
|
39 |
25 37 38
|
syl2anc |
|
40 |
|
simpl1 |
|
41 |
11
|
adantr |
|
42 |
|
simpr |
|
43 |
|
cshwidxmod |
|
44 |
43
|
fveq2d |
|
45 |
40 41 42 44
|
syl3anc |
|
46 |
22 39 45
|
3eqtr4rd |
|
47 |
|
fvco2 |
|
48 |
4 47
|
sylan |
|
49 |
10
|
adantr |
|
50 |
15
|
eqcomd |
|
51 |
50
|
oveq2d |
|
52 |
51
|
eleq2d |
|
53 |
52
|
biimpa |
|
54 |
|
cshwidxmod |
|
55 |
49 41 53 54
|
syl3anc |
|
56 |
46 48 55
|
3eqtr4d |
|
57 |
8 18 56
|
eqfnfvd |
|