Metamath Proof Explorer


Theorem cshnz

Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018) (Revised by AV, 17-Nov-2018)

Ref Expression
Assertion cshnz ¬ N W cyclShift N =

Proof

Step Hyp Ref Expression
1 df-csh cyclShift = w f | l 0 f Fn 0 ..^ l , n if w = w substr n mod w w ++ w prefix n mod w
2 0ex V
3 ovex w substr n mod w w ++ w prefix n mod w V
4 2 3 ifex if w = w substr n mod w w ++ w prefix n mod w V
5 1 4 dmmpo dom cyclShift = f | l 0 f Fn 0 ..^ l ×
6 id ¬ N ¬ N
7 6 intnand ¬ N ¬ W f | l 0 f Fn 0 ..^ l N
8 ndmovg dom cyclShift = f | l 0 f Fn 0 ..^ l × ¬ W f | l 0 f Fn 0 ..^ l N W cyclShift N =
9 5 7 8 sylancr ¬ N W cyclShift N =