Metamath Proof Explorer


Theorem cshwcl

Description: A cyclically shifted word is a word over the same set as for the original word. (Contributed by AV, 16-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 27-Oct-2018)

Ref Expression
Assertion cshwcl W Word V W cyclShift N Word V

Proof

Step Hyp Ref Expression
1 cshword W Word V N W cyclShift N = W substr N mod W W ++ W prefix N mod W
2 swrdcl W Word V W substr N mod W W Word V
3 pfxcl W Word V W prefix N mod W Word V
4 ccatcl W substr N mod W W Word V W prefix N mod W Word V W substr N mod W W ++ W prefix N mod W Word V
5 2 3 4 syl2anc W Word V W substr N mod W W ++ W prefix N mod W Word V
6 5 adantr W Word V N W substr N mod W W ++ W prefix N mod W Word V
7 1 6 eqeltrd W Word V N W cyclShift N Word V
8 7 expcom N W Word V W cyclShift N Word V
9 cshnz ¬ N W cyclShift N =
10 wrd0 Word V
11 9 10 eqeltrdi ¬ N W cyclShift N Word V
12 11 a1d ¬ N W Word V W cyclShift N Word V
13 8 12 pm2.61i W Word V W cyclShift N Word V