| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwcshid.1 |
|
| 2 |
|
cshwcshid.2 |
|
| 3 |
|
fznn0sub2 |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eleq2d |
|
| 6 |
3 5
|
imbitrrid |
|
| 7 |
6 2
|
syl11 |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
impcom |
|
| 10 |
|
simpl |
|
| 11 |
|
elfzelz |
|
| 12 |
11
|
adantl |
|
| 13 |
|
elfz2nn0 |
|
| 14 |
|
nn0z |
|
| 15 |
|
nn0z |
|
| 16 |
|
zsubcl |
|
| 17 |
14 15 16
|
syl2anr |
|
| 18 |
17
|
3adant3 |
|
| 19 |
13 18
|
sylbi |
|
| 20 |
19
|
adantl |
|
| 21 |
10 12 20
|
3jca |
|
| 22 |
1 21
|
sylan |
|
| 23 |
|
2cshw |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
nn0cn |
|
| 26 |
|
nn0cn |
|
| 27 |
25 26
|
anim12i |
|
| 28 |
27
|
3adant3 |
|
| 29 |
13 28
|
sylbi |
|
| 30 |
|
pncan3 |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantl |
|
| 33 |
32
|
oveq2d |
|
| 34 |
|
cshwn |
|
| 35 |
1 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
24 33 36
|
3eqtrrd |
|
| 38 |
37
|
adantrr |
|
| 39 |
|
oveq1 |
|
| 40 |
39
|
eqeq2d |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
adantl |
|
| 43 |
38 42
|
mpbird |
|
| 44 |
|
oveq2 |
|
| 45 |
44
|
rspceeqv |
|
| 46 |
9 43 45
|
syl2anc |
|
| 47 |
46
|
ex |
|