Step |
Hyp |
Ref |
Expression |
1 |
|
cshwcshid.1 |
|
2 |
|
cshwcshid.2 |
|
3 |
|
fznn0sub2 |
|
4 |
|
oveq2 |
|
5 |
4
|
eleq2d |
|
6 |
3 5
|
syl5ibr |
|
7 |
6 2
|
syl11 |
|
8 |
7
|
adantr |
|
9 |
8
|
impcom |
|
10 |
|
simpl |
|
11 |
|
elfzelz |
|
12 |
11
|
adantl |
|
13 |
|
elfz2nn0 |
|
14 |
|
nn0z |
|
15 |
|
nn0z |
|
16 |
|
zsubcl |
|
17 |
14 15 16
|
syl2anr |
|
18 |
17
|
3adant3 |
|
19 |
13 18
|
sylbi |
|
20 |
19
|
adantl |
|
21 |
10 12 20
|
3jca |
|
22 |
1 21
|
sylan |
|
23 |
|
2cshw |
|
24 |
22 23
|
syl |
|
25 |
|
nn0cn |
|
26 |
|
nn0cn |
|
27 |
25 26
|
anim12i |
|
28 |
27
|
3adant3 |
|
29 |
13 28
|
sylbi |
|
30 |
|
pncan3 |
|
31 |
29 30
|
syl |
|
32 |
31
|
adantl |
|
33 |
32
|
oveq2d |
|
34 |
|
cshwn |
|
35 |
1 34
|
syl |
|
36 |
35
|
adantr |
|
37 |
24 33 36
|
3eqtrrd |
|
38 |
37
|
adantrr |
|
39 |
|
oveq1 |
|
40 |
39
|
eqeq2d |
|
41 |
40
|
adantl |
|
42 |
41
|
adantl |
|
43 |
38 42
|
mpbird |
|
44 |
|
oveq2 |
|
45 |
44
|
rspceeqv |
|
46 |
9 43 45
|
syl2anc |
|
47 |
46
|
ex |
|