Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
adantr |
|
3 |
|
zsubcl |
|
4 |
3
|
ancoms |
|
5 |
4
|
adantl |
|
6 |
|
simpr |
|
7 |
6
|
adantl |
|
8 |
2 5 7
|
3jca |
|
9 |
8
|
adantr |
|
10 |
|
3cshw |
|
11 |
9 10
|
syl |
|
12 |
|
simpl |
|
13 |
12
|
ancomd |
|
14 |
13
|
adantr |
|
15 |
|
simpr |
|
16 |
15
|
ancomd |
|
17 |
16
|
adantr |
|
18 |
|
simpr |
|
19 |
18
|
eqcomd |
|
20 |
|
cshwleneq |
|
21 |
14 17 19 20
|
syl3anc |
|
22 |
21
|
oveq1d |
|
23 |
22
|
oveq2d |
|
24 |
11 23
|
eqtrd |
|
25 |
19
|
oveq1d |
|
26 |
|
simpl |
|
27 |
26
|
adantr |
|
28 |
|
simpl |
|
29 |
28
|
adantl |
|
30 |
27 29 5
|
3jca |
|
31 |
30
|
adantr |
|
32 |
|
2cshw |
|
33 |
31 32
|
syl |
|
34 |
|
zcn |
|
35 |
|
zcn |
|
36 |
34 35
|
anim12i |
|
37 |
36
|
adantl |
|
38 |
37
|
adantr |
|
39 |
|
pncan3 |
|
40 |
38 39
|
syl |
|
41 |
40
|
oveq2d |
|
42 |
25 33 41
|
3eqtrd |
|
43 |
42
|
oveq1d |
|
44 |
|
lencl |
|
45 |
44
|
nn0zd |
|
46 |
45
|
adantr |
|
47 |
|
zsubcl |
|
48 |
46 6 47
|
syl2an |
|
49 |
27 7 48
|
3jca |
|
50 |
49
|
adantr |
|
51 |
|
2cshw |
|
52 |
50 51
|
syl |
|
53 |
24 43 52
|
3eqtrd |
|
54 |
44
|
nn0cnd |
|
55 |
54
|
adantr |
|
56 |
35
|
adantl |
|
57 |
55 56
|
anim12i |
|
58 |
57
|
ancomd |
|
59 |
58
|
adantr |
|
60 |
|
pncan3 |
|
61 |
59 60
|
syl |
|
62 |
61
|
oveq2d |
|
63 |
|
cshwn |
|
64 |
27 63
|
syl |
|
65 |
64
|
adantr |
|
66 |
53 62 65
|
3eqtrd |
|
67 |
66
|
ex |
|