Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
1
|
oveq2d |
|
3 |
2
|
fvoveq1d |
|
4 |
3
|
eqeq2d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq1 |
|
7 |
6
|
oveq2d |
|
8 |
7
|
fvoveq1d |
|
9 |
8
|
eqeq2d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq1 |
|
12 |
11
|
oveq2d |
|
13 |
12
|
fvoveq1d |
|
14 |
13
|
eqeq2d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq1 |
|
17 |
16
|
oveq2d |
|
18 |
17
|
fvoveq1d |
|
19 |
18
|
eqeq2d |
|
20 |
19
|
imbi2d |
|
21 |
|
zcn |
|
22 |
21
|
mul02d |
|
23 |
22
|
adantl |
|
24 |
23
|
adantr |
|
25 |
24
|
oveq2d |
|
26 |
|
elfzoelz |
|
27 |
26
|
zcnd |
|
28 |
27
|
addid1d |
|
29 |
28
|
ad2antll |
|
30 |
25 29
|
eqtrd |
|
31 |
30
|
oveq1d |
|
32 |
|
zmodidfzoimp |
|
33 |
32
|
ad2antll |
|
34 |
31 33
|
eqtr2d |
|
35 |
34
|
fveq2d |
|
36 |
|
fveq1 |
|
37 |
36
|
eqcoms |
|
38 |
37
|
ad2antrl |
|
39 |
38
|
adantl |
|
40 |
|
simprll |
|
41 |
|
simprlr |
|
42 |
|
elfzo0 |
|
43 |
|
nn0z |
|
44 |
43
|
adantr |
|
45 |
|
nn0z |
|
46 |
|
zmulcl |
|
47 |
45 46
|
sylan |
|
48 |
47
|
ancoms |
|
49 |
|
zaddcl |
|
50 |
44 48 49
|
syl2an |
|
51 |
|
simplr |
|
52 |
50 51
|
jca |
|
53 |
52
|
ex |
|
54 |
53
|
3adant3 |
|
55 |
42 54
|
sylbi |
|
56 |
55
|
adantl |
|
57 |
56
|
expd |
|
58 |
57
|
com12 |
|
59 |
58
|
adantl |
|
60 |
59
|
imp |
|
61 |
60
|
impcom |
|
62 |
|
zmodfzo |
|
63 |
61 62
|
syl |
|
64 |
|
cshwidxmod |
|
65 |
40 41 63 64
|
syl3anc |
|
66 |
|
nn0re |
|
67 |
|
zre |
|
68 |
|
nn0re |
|
69 |
|
nnrp |
|
70 |
|
remulcl |
|
71 |
70
|
ancoms |
|
72 |
|
readdcl |
|
73 |
71 72
|
sylan2 |
|
74 |
73
|
ancoms |
|
75 |
74
|
adantl |
|
76 |
|
simprll |
|
77 |
|
simpl |
|
78 |
|
modaddmod |
|
79 |
75 76 77 78
|
syl3anc |
|
80 |
|
recn |
|
81 |
80
|
adantl |
|
82 |
70
|
recnd |
|
83 |
82
|
ancoms |
|
84 |
83
|
adantr |
|
85 |
|
recn |
|
86 |
85
|
adantr |
|
87 |
86
|
adantr |
|
88 |
81 84 87
|
addassd |
|
89 |
|
recn |
|
90 |
89
|
adantl |
|
91 |
|
1cnd |
|
92 |
90 91 86
|
adddird |
|
93 |
85
|
mulid2d |
|
94 |
93
|
adantr |
|
95 |
94
|
oveq2d |
|
96 |
92 95
|
eqtr2d |
|
97 |
96
|
adantr |
|
98 |
97
|
oveq2d |
|
99 |
88 98
|
eqtrd |
|
100 |
99
|
adantl |
|
101 |
100
|
oveq1d |
|
102 |
79 101
|
eqtrd |
|
103 |
102
|
ex |
|
104 |
69 103
|
syl |
|
105 |
104
|
expd |
|
106 |
105
|
com12 |
|
107 |
67 68 106
|
syl2an |
|
108 |
107
|
com13 |
|
109 |
66 108
|
syl |
|
110 |
109
|
imp |
|
111 |
110
|
3adant3 |
|
112 |
42 111
|
sylbi |
|
113 |
112
|
expd |
|
114 |
113
|
adantld |
|
115 |
114
|
adantl |
|
116 |
115
|
impcom |
|
117 |
116
|
impcom |
|
118 |
117
|
fveq2d |
|
119 |
39 65 118
|
3eqtrd |
|
120 |
119
|
eqeq2d |
|
121 |
120
|
biimpd |
|
122 |
121
|
ex |
|
123 |
122
|
a2d |
|
124 |
5 10 15 20 35 123
|
nn0ind |
|
125 |
124
|
com12 |
|
126 |
125
|
ralrimiv |
|
127 |
126
|
ex |
|