Metamath Proof Explorer


Theorem cshwf

Description: A cyclically shifted word is a function from a half-open range of integers of the same length as the word as domain to the set of symbols for the word. (Contributed by AV, 12-Nov-2018)

Ref Expression
Assertion cshwf W Word A N W cyclShift N : 0 ..^ W A

Proof

Step Hyp Ref Expression
1 cshwcl W Word A W cyclShift N Word A
2 wrdf W cyclShift N Word A W cyclShift N : 0 ..^ W cyclShift N A
3 1 2 syl W Word A W cyclShift N : 0 ..^ W cyclShift N A
4 3 adantr W Word A N W cyclShift N : 0 ..^ W cyclShift N A
5 cshwlen W Word A N W cyclShift N = W
6 5 oveq2d W Word A N 0 ..^ W cyclShift N = 0 ..^ W
7 6 feq2d W Word A N W cyclShift N : 0 ..^ W cyclShift N A W cyclShift N : 0 ..^ W A
8 4 7 mpbid W Word A N W cyclShift N : 0 ..^ W A