Step |
Hyp |
Ref |
Expression |
1 |
|
cshwrepswhash1.m |
|
2 |
|
nnnn0 |
|
3 |
|
repsdf2 |
|
4 |
2 3
|
sylan2 |
|
5 |
|
simp1 |
|
6 |
5
|
adantl |
|
7 |
|
eleq1 |
|
8 |
7
|
eqcoms |
|
9 |
|
lbfzo0 |
|
10 |
9
|
biimpri |
|
11 |
8 10
|
syl6bi |
|
12 |
11
|
3ad2ant2 |
|
13 |
12
|
com12 |
|
14 |
13
|
adantl |
|
15 |
14
|
imp |
|
16 |
|
cshw0 |
|
17 |
6 16
|
syl |
|
18 |
|
oveq2 |
|
19 |
18
|
eqeq1d |
|
20 |
19
|
rspcev |
|
21 |
15 17 20
|
syl2anc |
|
22 |
|
eqeq2 |
|
23 |
22
|
rexbidv |
|
24 |
23
|
rspcev |
|
25 |
6 21 24
|
syl2anc |
|
26 |
25
|
ex |
|
27 |
4 26
|
sylbid |
|
28 |
27
|
3impia |
|
29 |
|
repsw |
|
30 |
2 29
|
sylan2 |
|
31 |
30
|
3adant3 |
|
32 |
|
simpll3 |
|
33 |
32
|
oveq1d |
|
34 |
|
simp1 |
|
35 |
34
|
ad2antrr |
|
36 |
2
|
3ad2ant2 |
|
37 |
36
|
ad2antrr |
|
38 |
|
elfzoelz |
|
39 |
38
|
adantl |
|
40 |
|
repswcshw |
|
41 |
35 37 39 40
|
syl3anc |
|
42 |
33 41
|
eqtrd |
|
43 |
42
|
eqeq1d |
|
44 |
43
|
biimpd |
|
45 |
44
|
rexlimdva |
|
46 |
45
|
ralrimiva |
|
47 |
|
eqeq1 |
|
48 |
47
|
imbi2d |
|
49 |
48
|
ralbidv |
|
50 |
49
|
rspcev |
|
51 |
31 46 50
|
syl2anc |
|
52 |
|
eqeq2 |
|
53 |
52
|
rexbidv |
|
54 |
53
|
reu7 |
|
55 |
28 51 54
|
sylanbrc |
|
56 |
|
reusn |
|
57 |
55 56
|
sylib |
|
58 |
1
|
eqeq1i |
|
59 |
58
|
exbii |
|
60 |
57 59
|
sylibr |
|
61 |
1
|
cshwsex |
|
62 |
61
|
3ad2ant1 |
|
63 |
4 62
|
syl6bi |
|
64 |
63
|
3impia |
|
65 |
|
hash1snb |
|
66 |
64 65
|
syl |
|
67 |
60 66
|
mpbird |
|