| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwrepswhash1.m |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
repsdf2 |
|
| 4 |
2 3
|
sylan2 |
|
| 5 |
|
simp1 |
|
| 6 |
5
|
adantl |
|
| 7 |
|
eleq1 |
|
| 8 |
7
|
eqcoms |
|
| 9 |
|
lbfzo0 |
|
| 10 |
9
|
biimpri |
|
| 11 |
8 10
|
biimtrdi |
|
| 12 |
11
|
3ad2ant2 |
|
| 13 |
12
|
com12 |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
imp |
|
| 16 |
|
cshw0 |
|
| 17 |
6 16
|
syl |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
eqeq1d |
|
| 20 |
19
|
rspcev |
|
| 21 |
15 17 20
|
syl2anc |
|
| 22 |
|
eqeq2 |
|
| 23 |
22
|
rexbidv |
|
| 24 |
23
|
rspcev |
|
| 25 |
6 21 24
|
syl2anc |
|
| 26 |
25
|
ex |
|
| 27 |
4 26
|
sylbid |
|
| 28 |
27
|
3impia |
|
| 29 |
|
repsw |
|
| 30 |
2 29
|
sylan2 |
|
| 31 |
30
|
3adant3 |
|
| 32 |
|
simpll3 |
|
| 33 |
32
|
oveq1d |
|
| 34 |
|
simp1 |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
2
|
3ad2ant2 |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
elfzoelz |
|
| 39 |
38
|
adantl |
|
| 40 |
|
repswcshw |
|
| 41 |
35 37 39 40
|
syl3anc |
|
| 42 |
33 41
|
eqtrd |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
43
|
biimpd |
|
| 45 |
44
|
rexlimdva |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
eqeq1 |
|
| 48 |
47
|
imbi2d |
|
| 49 |
48
|
ralbidv |
|
| 50 |
49
|
rspcev |
|
| 51 |
31 46 50
|
syl2anc |
|
| 52 |
|
eqeq2 |
|
| 53 |
52
|
rexbidv |
|
| 54 |
53
|
reu7 |
|
| 55 |
28 51 54
|
sylanbrc |
|
| 56 |
|
reusn |
|
| 57 |
55 56
|
sylib |
|
| 58 |
1
|
eqeq1i |
|
| 59 |
58
|
exbii |
|
| 60 |
57 59
|
sylibr |
|
| 61 |
1
|
cshwsex |
|
| 62 |
61
|
3ad2ant1 |
|
| 63 |
4 62
|
biimtrdi |
|
| 64 |
63
|
3impia |
|
| 65 |
|
hash1snb |
|
| 66 |
64 65
|
syl |
|
| 67 |
60 66
|
mpbird |
|