Metamath Proof Explorer


Theorem cshwsdisj

Description: The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018) (Revised by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Hypothesis cshwshash.0 φ W Word V W
Assertion cshwsdisj φ i 0 ..^ W W i W 0 Disj n 0 ..^ W W cyclShift n

Proof

Step Hyp Ref Expression
1 cshwshash.0 φ W Word V W
2 orc n = j n = j W cyclShift n W cyclShift j =
3 2 a1d n = j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W n = j W cyclShift n W cyclShift j =
4 simprl n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W φ i 0 ..^ W W i W 0
5 simprrl n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W n 0 ..^ W
6 simprrr n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W j 0 ..^ W
7 necom n j j n
8 7 biimpi n j j n
9 8 adantr n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W j n
10 1 cshwshashlem3 φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W j n W cyclShift n W cyclShift j
11 10 imp φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W j n W cyclShift n W cyclShift j
12 4 5 6 9 11 syl13anc n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W W cyclShift n W cyclShift j
13 disjsn2 W cyclShift n W cyclShift j W cyclShift n W cyclShift j =
14 12 13 syl n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W W cyclShift n W cyclShift j =
15 14 olcd n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W n = j W cyclShift n W cyclShift j =
16 15 ex n j φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W n = j W cyclShift n W cyclShift j =
17 3 16 pm2.61ine φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W n = j W cyclShift n W cyclShift j =
18 17 ralrimivva φ i 0 ..^ W W i W 0 n 0 ..^ W j 0 ..^ W n = j W cyclShift n W cyclShift j =
19 oveq2 n = j W cyclShift n = W cyclShift j
20 19 sneqd n = j W cyclShift n = W cyclShift j
21 20 disjor Disj n 0 ..^ W W cyclShift n n 0 ..^ W j 0 ..^ W n = j W cyclShift n W cyclShift j =
22 18 21 sylibr φ i 0 ..^ W W i W 0 Disj n 0 ..^ W W cyclShift n