Metamath Proof Explorer


Theorem cshwsex

Description: The class of (different!) words resulting by cyclically shifting a given word is a set. (Contributed by AV, 8-Jun-2018) (Revised by AV, 8-Nov-2018)

Ref Expression
Hypothesis cshwrepswhash1.m M = w Word V | n 0 ..^ W W cyclShift n = w
Assertion cshwsex W Word V M V

Proof

Step Hyp Ref Expression
1 cshwrepswhash1.m M = w Word V | n 0 ..^ W W cyclShift n = w
2 1 cshwsiun W Word V M = n 0 ..^ W W cyclShift n
3 ovex 0 ..^ W V
4 snex W cyclShift n V
5 4 a1i W Word V W cyclShift n V
6 5 ralrimivw W Word V n 0 ..^ W W cyclShift n V
7 iunexg 0 ..^ W V n 0 ..^ W W cyclShift n V n 0 ..^ W W cyclShift n V
8 3 6 7 sylancr W Word V n 0 ..^ W W cyclShift n V
9 2 8 eqeltrd W Word V M V