Metamath Proof Explorer


Theorem cshwsexa

Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018) (Revised by Mario Carneiro/AV, 25-Oct-2018)

Ref Expression
Assertion cshwsexa w Word V | n 0 ..^ W W cyclShift n = w V

Proof

Step Hyp Ref Expression
1 df-rab w Word V | n 0 ..^ W W cyclShift n = w = w | w Word V n 0 ..^ W W cyclShift n = w
2 r19.42v n 0 ..^ W w Word V W cyclShift n = w w Word V n 0 ..^ W W cyclShift n = w
3 2 bicomi w Word V n 0 ..^ W W cyclShift n = w n 0 ..^ W w Word V W cyclShift n = w
4 3 abbii w | w Word V n 0 ..^ W W cyclShift n = w = w | n 0 ..^ W w Word V W cyclShift n = w
5 df-rex n 0 ..^ W w Word V W cyclShift n = w n n 0 ..^ W w Word V W cyclShift n = w
6 5 abbii w | n 0 ..^ W w Word V W cyclShift n = w = w | n n 0 ..^ W w Word V W cyclShift n = w
7 1 4 6 3eqtri w Word V | n 0 ..^ W W cyclShift n = w = w | n n 0 ..^ W w Word V W cyclShift n = w
8 abid2 n | n 0 ..^ W = 0 ..^ W
9 8 ovexi n | n 0 ..^ W V
10 tru
11 10 10 pm3.2i
12 ovexd W cyclShift n V
13 eqtr3 w = W cyclShift n y = W cyclShift n w = y
14 13 ex w = W cyclShift n y = W cyclShift n w = y
15 14 eqcoms W cyclShift n = w y = W cyclShift n w = y
16 15 adantl w Word V W cyclShift n = w y = W cyclShift n w = y
17 16 com12 y = W cyclShift n w Word V W cyclShift n = w w = y
18 17 ad2antlr y = W cyclShift n w Word V W cyclShift n = w w = y
19 18 alrimiv y = W cyclShift n w w Word V W cyclShift n = w w = y
20 19 ex y = W cyclShift n w w Word V W cyclShift n = w w = y
21 12 20 spcimedv y w w Word V W cyclShift n = w w = y
22 21 imp y w w Word V W cyclShift n = w w = y
23 11 22 mp1i n 0 ..^ W y w w Word V W cyclShift n = w w = y
24 9 23 zfrep4 w | n n 0 ..^ W w Word V W cyclShift n = w V
25 7 24 eqeltri w Word V | n 0 ..^ W W cyclShift n = w V