Metamath Proof Explorer


Theorem cshwsexa

Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018) (Revised by Mario Carneiro/AV, 25-Oct-2018) (Proof shortened by SN, 15-Jan-2025)

Ref Expression
Assertion cshwsexa w Word V | n 0 ..^ W W cyclShift n = w V

Proof

Step Hyp Ref Expression
1 eqcom W cyclShift n = w w = W cyclShift n
2 1 rexbii n 0 ..^ W W cyclShift n = w n 0 ..^ W w = W cyclShift n
3 2 abbii w | n 0 ..^ W W cyclShift n = w = w | n 0 ..^ W w = W cyclShift n
4 ovex 0 ..^ W V
5 4 abrexex w | n 0 ..^ W w = W cyclShift n V
6 3 5 eqeltri w | n 0 ..^ W W cyclShift n = w V
7 rabssab w Word V | n 0 ..^ W W cyclShift n = w w | n 0 ..^ W W cyclShift n = w
8 6 7 ssexi w Word V | n 0 ..^ W W cyclShift n = w V