Metamath Proof Explorer


Theorem cshwshash

Description: If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018) (Revised by AV, 10-Nov-2018)

Ref Expression
Hypothesis cshwrepswhash1.m M = w Word V | n 0 ..^ W W cyclShift n = w
Assertion cshwshash W Word V W M = W M = 1

Proof

Step Hyp Ref Expression
1 cshwrepswhash1.m M = w Word V | n 0 ..^ W W cyclShift n = w
2 repswsymballbi W Word V W = W 0 repeatS W i 0 ..^ W W i = W 0
3 2 adantr W Word V W W = W 0 repeatS W i 0 ..^ W W i = W 0
4 prmnn W W
5 4 nnge1d W 1 W
6 wrdsymb1 W Word V 1 W W 0 V
7 5 6 sylan2 W Word V W W 0 V
8 7 adantr W Word V W W = W 0 repeatS W W 0 V
9 4 ad2antlr W Word V W W = W 0 repeatS W W
10 simpr W Word V W W = W 0 repeatS W W = W 0 repeatS W
11 1 cshwrepswhash1 W 0 V W W = W 0 repeatS W M = 1
12 8 9 10 11 syl3anc W Word V W W = W 0 repeatS W M = 1
13 12 ex W Word V W W = W 0 repeatS W M = 1
14 3 13 sylbird W Word V W i 0 ..^ W W i = W 0 M = 1
15 olc M = 1 M = W M = 1
16 14 15 syl6com i 0 ..^ W W i = W 0 W Word V W M = W M = 1
17 rexnal i 0 ..^ W ¬ W i = W 0 ¬ i 0 ..^ W W i = W 0
18 df-ne W i W 0 ¬ W i = W 0
19 18 bicomi ¬ W i = W 0 W i W 0
20 19 rexbii i 0 ..^ W ¬ W i = W 0 i 0 ..^ W W i W 0
21 17 20 bitr3i ¬ i 0 ..^ W W i = W 0 i 0 ..^ W W i W 0
22 1 cshwshashnsame W Word V W i 0 ..^ W W i W 0 M = W
23 orc M = W M = W M = 1
24 22 23 syl6com i 0 ..^ W W i W 0 W Word V W M = W M = 1
25 21 24 sylbi ¬ i 0 ..^ W W i = W 0 W Word V W M = W M = 1
26 16 25 pm2.61i W Word V W M = W M = 1