Metamath Proof Explorer


Theorem cshwshashlem3

Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018) (Revised by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Hypothesis cshwshash.0 φ W Word V W
Assertion cshwshashlem3 φ i 0 ..^ W W i W 0 L 0 ..^ W K 0 ..^ W K L W cyclShift L W cyclShift K

Proof

Step Hyp Ref Expression
1 cshwshash.0 φ W Word V W
2 elfzoelz K 0 ..^ W K
3 2 zred K 0 ..^ W K
4 elfzoelz L 0 ..^ W L
5 4 zred L 0 ..^ W L
6 lttri2 K L K L K < L L < K
7 3 5 6 syl2anr L 0 ..^ W K 0 ..^ W K L K < L L < K
8 1 cshwshashlem2 φ i 0 ..^ W W i W 0 L 0 ..^ W K 0 ..^ W K < L W cyclShift L W cyclShift K
9 8 com12 L 0 ..^ W K 0 ..^ W K < L φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
10 9 3expia L 0 ..^ W K 0 ..^ W K < L φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
11 1 cshwshashlem2 φ i 0 ..^ W W i W 0 K 0 ..^ W L 0 ..^ W L < K W cyclShift K W cyclShift L
12 11 imp φ i 0 ..^ W W i W 0 K 0 ..^ W L 0 ..^ W L < K W cyclShift K W cyclShift L
13 12 necomd φ i 0 ..^ W W i W 0 K 0 ..^ W L 0 ..^ W L < K W cyclShift L W cyclShift K
14 13 expcom K 0 ..^ W L 0 ..^ W L < K φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
15 14 3expia K 0 ..^ W L 0 ..^ W L < K φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
16 15 ancoms L 0 ..^ W K 0 ..^ W L < K φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
17 10 16 jaod L 0 ..^ W K 0 ..^ W K < L L < K φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
18 7 17 sylbid L 0 ..^ W K 0 ..^ W K L φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
19 18 3impia L 0 ..^ W K 0 ..^ W K L φ i 0 ..^ W W i W 0 W cyclShift L W cyclShift K
20 19 com12 φ i 0 ..^ W W i W 0 L 0 ..^ W K 0 ..^ W K L W cyclShift L W cyclShift K