Metamath Proof Explorer


Theorem cshwsiun

Description: The set of (different!) words resulting by cyclically shifting a given word is an indexed union. (Contributed by AV, 19-May-2018) (Revised by AV, 8-Jun-2018) (Proof shortened by AV, 8-Nov-2018)

Ref Expression
Hypothesis cshwrepswhash1.m M = w Word V | n 0 ..^ W W cyclShift n = w
Assertion cshwsiun W Word V M = n 0 ..^ W W cyclShift n

Proof

Step Hyp Ref Expression
1 cshwrepswhash1.m M = w Word V | n 0 ..^ W W cyclShift n = w
2 df-rab w Word V | n 0 ..^ W W cyclShift n = w = w | w Word V n 0 ..^ W W cyclShift n = w
3 eqcom W cyclShift n = w w = W cyclShift n
4 3 biimpi W cyclShift n = w w = W cyclShift n
5 4 reximi n 0 ..^ W W cyclShift n = w n 0 ..^ W w = W cyclShift n
6 5 adantl w Word V n 0 ..^ W W cyclShift n = w n 0 ..^ W w = W cyclShift n
7 cshwcl W Word V W cyclShift n Word V
8 7 adantr W Word V n 0 ..^ W W cyclShift n Word V
9 eleq1 w = W cyclShift n w Word V W cyclShift n Word V
10 8 9 syl5ibrcom W Word V n 0 ..^ W w = W cyclShift n w Word V
11 10 rexlimdva W Word V n 0 ..^ W w = W cyclShift n w Word V
12 eqcom w = W cyclShift n W cyclShift n = w
13 12 biimpi w = W cyclShift n W cyclShift n = w
14 13 reximi n 0 ..^ W w = W cyclShift n n 0 ..^ W W cyclShift n = w
15 11 14 jca2 W Word V n 0 ..^ W w = W cyclShift n w Word V n 0 ..^ W W cyclShift n = w
16 6 15 impbid2 W Word V w Word V n 0 ..^ W W cyclShift n = w n 0 ..^ W w = W cyclShift n
17 velsn w W cyclShift n w = W cyclShift n
18 17 bicomi w = W cyclShift n w W cyclShift n
19 18 a1i W Word V w = W cyclShift n w W cyclShift n
20 19 rexbidv W Word V n 0 ..^ W w = W cyclShift n n 0 ..^ W w W cyclShift n
21 16 20 bitrd W Word V w Word V n 0 ..^ W W cyclShift n = w n 0 ..^ W w W cyclShift n
22 21 abbidv W Word V w | w Word V n 0 ..^ W W cyclShift n = w = w | n 0 ..^ W w W cyclShift n
23 2 22 eqtrid W Word V w Word V | n 0 ..^ W W cyclShift n = w = w | n 0 ..^ W w W cyclShift n
24 df-iun n 0 ..^ W W cyclShift n = w | n 0 ..^ W w W cyclShift n
25 23 1 24 3eqtr4g W Word V M = n 0 ..^ W W cyclShift n