Metamath Proof Explorer


Theorem csrgbinom

Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019)

Ref Expression
Hypotheses srgbinom.s S = Base R
srgbinom.m × ˙ = R
srgbinom.t · ˙ = R
srgbinom.a + ˙ = + R
srgbinom.g G = mulGrp R
srgbinom.e × ˙ = G
Assertion csrgbinom R SRing G CMnd N 0 A S B S N × ˙ A + ˙ B = R k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ B

Proof

Step Hyp Ref Expression
1 srgbinom.s S = Base R
2 srgbinom.m × ˙ = R
3 srgbinom.t · ˙ = R
4 srgbinom.a + ˙ = + R
5 srgbinom.g G = mulGrp R
6 srgbinom.e × ˙ = G
7 3simpb R SRing G CMnd N 0 R SRing N 0
8 7 adantr R SRing G CMnd N 0 A S B S R SRing N 0
9 simprl R SRing G CMnd N 0 A S B S A S
10 simprr R SRing G CMnd N 0 A S B S B S
11 simpl2 R SRing G CMnd N 0 A S B S G CMnd
12 5 1 mgpbas S = Base G
13 5 2 mgpplusg × ˙ = + G
14 12 13 cmncom G CMnd A S B S A × ˙ B = B × ˙ A
15 11 9 10 14 syl3anc R SRing G CMnd N 0 A S B S A × ˙ B = B × ˙ A
16 1 2 3 4 5 6 srgbinom R SRing N 0 A S B S A × ˙ B = B × ˙ A N × ˙ A + ˙ B = R k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ B
17 8 9 10 15 16 syl13anc R SRing G CMnd N 0 A S B S N × ˙ A + ˙ B = R k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ B