Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthocomplements and closed subspaces
css0
Next ⟩
css1
Metamath Proof Explorer
Ascii
Unicode
Theorem
css0
Description:
The zero subspace is a closed subspace.
(Contributed by
Mario Carneiro
, 13-Oct-2015)
Ref
Expression
Hypotheses
css0.c
⊢
C
=
ClSubSp
⁡
W
css0.z
⊢
0
˙
=
0
W
Assertion
css0
⊢
W
∈
PreHil
→
0
˙
∈
C
Proof
Step
Hyp
Ref
Expression
1
css0.c
⊢
C
=
ClSubSp
⁡
W
2
css0.z
⊢
0
˙
=
0
W
3
eqid
⊢
Base
W
=
Base
W
4
eqid
⊢
ocv
⁡
W
=
ocv
⁡
W
5
3
4
2
ocv1
⊢
W
∈
PreHil
→
ocv
⁡
W
⁡
Base
W
=
0
˙
6
ssid
⊢
Base
W
⊆
Base
W
7
3
1
4
ocvcss
⊢
W
∈
PreHil
∧
Base
W
⊆
Base
W
→
ocv
⁡
W
⁡
Base
W
∈
C
8
6
7
mpan2
⊢
W
∈
PreHil
→
ocv
⁡
W
⁡
Base
W
∈
C
9
5
8
eqeltrrd
⊢
W
∈
PreHil
→
0
˙
∈
C