Metamath Proof Explorer


Theorem css0

Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css0.c C = ClSubSp W
css0.z 0 ˙ = 0 W
Assertion css0 W PreHil 0 ˙ C

Proof

Step Hyp Ref Expression
1 css0.c C = ClSubSp W
2 css0.z 0 ˙ = 0 W
3 eqid Base W = Base W
4 eqid ocv W = ocv W
5 3 4 2 ocv1 W PreHil ocv W Base W = 0 ˙
6 ssid Base W Base W
7 3 1 4 ocvcss W PreHil Base W Base W ocv W Base W C
8 6 7 mpan2 W PreHil ocv W Base W C
9 5 8 eqeltrrd W PreHil 0 ˙ C