Metamath Proof Explorer


Theorem css1

Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css1.v V = Base W
css1.c C = ClSubSp W
Assertion css1 W PreHil V C

Proof

Step Hyp Ref Expression
1 css1.v V = Base W
2 css1.c C = ClSubSp W
3 eqid ocv W = ocv W
4 1 3 ocv0 ocv W = V
5 0ss V
6 1 2 3 ocvcss W PreHil V ocv W C
7 5 6 mpan2 W PreHil ocv W C
8 4 7 eqeltrrid W PreHil V C