| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cssbn.x |  | 
						
							| 2 |  | cssbn.s |  | 
						
							| 3 |  | cssbn.d |  | 
						
							| 4 |  | simpl1 |  | 
						
							| 5 |  | simpl2 |  | 
						
							| 6 |  | nvcnlm |  | 
						
							| 7 |  | nlmngp |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 |  | nvclmod |  | 
						
							| 10 | 2 | lsssubg |  | 
						
							| 11 | 9 10 | sylan |  | 
						
							| 12 | 1 | subgngp |  | 
						
							| 13 | 8 11 12 | syl2an2r |  | 
						
							| 14 | 13 | 3adant2 |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 |  | ngpms |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 1 18 | ressds |  | 
						
							| 20 | 19 | 3ad2ant3 |  | 
						
							| 21 | 11 | 3adant2 |  | 
						
							| 22 | 1 | subgbas |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 23 | sqxpeqd |  | 
						
							| 25 | 20 24 | reseq12d |  | 
						
							| 26 | 3 25 | eqtrid |  | 
						
							| 27 | 26 | eqcomd |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 29 30 | ngpmet |  | 
						
							| 32 | 14 31 | syl |  | 
						
							| 33 | 26 32 | eqeltrd |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 36 | iscmet2 |  | 
						
							| 38 | 34 35 37 | sylanbrc |  | 
						
							| 39 | 28 38 | eqeltrd |  | 
						
							| 40 | 29 30 | iscms |  | 
						
							| 41 | 17 39 40 | sylanbrc |  | 
						
							| 42 |  | simpl3 |  | 
						
							| 43 | 1 2 | cmslssbn |  | 
						
							| 44 | 4 5 41 42 43 | syl22anc |  |