Step |
Hyp |
Ref |
Expression |
1 |
|
csscld.c |
|
2 |
|
csscld.j |
|
3 |
|
eqid |
|
4 |
3 1
|
cssi |
|
5 |
4
|
adantl |
|
6 |
|
eqid |
|
7 |
6 3
|
ocvss |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
6 8 9 10 3
|
ocvval |
|
12 |
7 11
|
mp1i |
|
13 |
|
riinrab |
|
14 |
12 13
|
eqtr4di |
|
15 |
|
cphnlm |
|
16 |
15
|
adantr |
|
17 |
|
nlmngp |
|
18 |
|
ngptps |
|
19 |
16 17 18
|
3syl |
|
20 |
6 2
|
istps |
|
21 |
19 20
|
sylib |
|
22 |
|
toponuni |
|
23 |
21 22
|
syl |
|
24 |
23
|
ineq1d |
|
25 |
5 14 24
|
3eqtrd |
|
26 |
|
topontop |
|
27 |
21 26
|
syl |
|
28 |
7
|
sseli |
|
29 |
|
fvex |
|
30 |
|
eqid |
|
31 |
30
|
mptiniseg |
|
32 |
29 31
|
ax-mp |
|
33 |
|
eqid |
|
34 |
|
simpll |
|
35 |
21
|
adantr |
|
36 |
35
|
cnmptid |
|
37 |
|
simpr |
|
38 |
35 35 37
|
cnmptc |
|
39 |
2 33 8 34 35 36 38
|
cnmpt1ip |
|
40 |
33
|
cnfldhaus |
|
41 |
|
cphclm |
|
42 |
9
|
clm0 |
|
43 |
41 42
|
syl |
|
44 |
43
|
ad2antrr |
|
45 |
|
0cn |
|
46 |
44 45
|
eqeltrrdi |
|
47 |
|
unicntop |
|
48 |
47
|
sncld |
|
49 |
40 46 48
|
sylancr |
|
50 |
|
cnclima |
|
51 |
39 49 50
|
syl2anc |
|
52 |
32 51
|
eqeltrrid |
|
53 |
28 52
|
sylan2 |
|
54 |
53
|
ralrimiva |
|
55 |
|
eqid |
|
56 |
55
|
riincld |
|
57 |
27 54 56
|
syl2anc |
|
58 |
25 57
|
eqeltrd |
|