Metamath Proof Explorer


Theorem cssi

Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o ˙ = ocv W
cssval.c C = ClSubSp W
Assertion cssi S C S = ˙ ˙ S

Proof

Step Hyp Ref Expression
1 cssval.o ˙ = ocv W
2 cssval.c C = ClSubSp W
3 elfvdm S ClSubSp W W dom ClSubSp
4 3 2 eleq2s S C W dom ClSubSp
5 1 2 iscss W dom ClSubSp S C S = ˙ ˙ S
6 4 5 syl S C S C S = ˙ ˙ S
7 6 ibi S C S = ˙ ˙ S