Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthocomplements and closed subspaces
cssincl
Next ⟩
css0
Metamath Proof Explorer
Ascii
Unicode
Theorem
cssincl
Description:
The zero subspace is a closed subspace.
(Contributed by
Mario Carneiro
, 13-Oct-2015)
Ref
Expression
Hypothesis
css0.c
⊢
C
=
ClSubSp
⁡
W
Assertion
cssincl
⊢
W
∈
PreHil
∧
A
∈
C
∧
B
∈
C
→
A
∩
B
∈
C
Proof
Step
Hyp
Ref
Expression
1
css0.c
⊢
C
=
ClSubSp
⁡
W
2
eqid
⊢
Base
W
=
Base
W
3
eqid
⊢
ocv
⁡
W
=
ocv
⁡
W
4
2
3
ocvss
⊢
ocv
⁡
W
⁡
A
⊆
Base
W
5
2
3
ocvss
⊢
ocv
⁡
W
⁡
B
⊆
Base
W
6
4
5
unssi
⊢
ocv
⁡
W
⁡
A
∪
ocv
⁡
W
⁡
B
⊆
Base
W
7
2
1
3
ocvcss
⊢
W
∈
PreHil
∧
ocv
⁡
W
⁡
A
∪
ocv
⁡
W
⁡
B
⊆
Base
W
→
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
∪
ocv
⁡
W
⁡
B
∈
C
8
6
7
mpan2
⊢
W
∈
PreHil
→
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
∪
ocv
⁡
W
⁡
B
∈
C
9
3
1
cssi
⊢
A
∈
C
→
A
=
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
10
3
1
cssi
⊢
B
∈
C
→
B
=
ocv
⁡
W
⁡
ocv
⁡
W
⁡
B
11
9
10
ineqan12d
⊢
A
∈
C
∧
B
∈
C
→
A
∩
B
=
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
∩
ocv
⁡
W
⁡
ocv
⁡
W
⁡
B
12
3
unocv
⊢
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
∪
ocv
⁡
W
⁡
B
=
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
∩
ocv
⁡
W
⁡
ocv
⁡
W
⁡
B
13
11
12
eqtr4di
⊢
A
∈
C
∧
B
∈
C
→
A
∩
B
=
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
∪
ocv
⁡
W
⁡
B
14
13
eleq1d
⊢
A
∈
C
∧
B
∈
C
→
A
∩
B
∈
C
↔
ocv
⁡
W
⁡
ocv
⁡
W
⁡
A
∪
ocv
⁡
W
⁡
B
∈
C
15
8
14
syl5ibrcom
⊢
W
∈
PreHil
→
A
∈
C
∧
B
∈
C
→
A
∩
B
∈
C
16
15
3impib
⊢
W
∈
PreHil
∧
A
∈
C
∧
B
∈
C
→
A
∩
B
∈
C