Metamath Proof Explorer


Theorem cssincl

Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis css0.c C = ClSubSp W
Assertion cssincl W PreHil A C B C A B C

Proof

Step Hyp Ref Expression
1 css0.c C = ClSubSp W
2 eqid Base W = Base W
3 eqid ocv W = ocv W
4 2 3 ocvss ocv W A Base W
5 2 3 ocvss ocv W B Base W
6 4 5 unssi ocv W A ocv W B Base W
7 2 1 3 ocvcss W PreHil ocv W A ocv W B Base W ocv W ocv W A ocv W B C
8 6 7 mpan2 W PreHil ocv W ocv W A ocv W B C
9 3 1 cssi A C A = ocv W ocv W A
10 3 1 cssi B C B = ocv W ocv W B
11 9 10 ineqan12d A C B C A B = ocv W ocv W A ocv W ocv W B
12 3 unocv ocv W ocv W A ocv W B = ocv W ocv W A ocv W ocv W B
13 11 12 eqtr4di A C B C A B = ocv W ocv W A ocv W B
14 13 eleq1d A C B C A B C ocv W ocv W A ocv W B C
15 8 14 syl5ibrcom W PreHil A C B C A B C
16 15 3impib W PreHil A C B C A B C