Metamath Proof Explorer


Theorem csslss

Description: A closed subspace of a pre-Hilbert space is a linear subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses csslss.c C = ClSubSp W
csslss.l L = LSubSp W
Assertion csslss W PreHil S C S L

Proof

Step Hyp Ref Expression
1 csslss.c C = ClSubSp W
2 csslss.l L = LSubSp W
3 eqid ocv W = ocv W
4 3 1 cssi S C S = ocv W ocv W S
5 4 adantl W PreHil S C S = ocv W ocv W S
6 eqid Base W = Base W
7 6 3 ocvss ocv W S Base W
8 7 a1i S C ocv W S Base W
9 6 3 2 ocvlss W PreHil ocv W S Base W ocv W ocv W S L
10 8 9 sylan2 W PreHil S C ocv W ocv W S L
11 5 10 eqeltrd W PreHil S C S L