Metamath Proof Explorer


Theorem cssval

Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o ˙ = ocv W
cssval.c C = ClSubSp W
Assertion cssval W X C = s | s = ˙ ˙ s

Proof

Step Hyp Ref Expression
1 cssval.o ˙ = ocv W
2 cssval.c C = ClSubSp W
3 elex W X W V
4 fveq2 w = W ocv w = ocv W
5 4 1 eqtr4di w = W ocv w = ˙
6 5 fveq1d w = W ocv w s = ˙ s
7 5 6 fveq12d w = W ocv w ocv w s = ˙ ˙ s
8 7 eqeq2d w = W s = ocv w ocv w s s = ˙ ˙ s
9 8 abbidv w = W s | s = ocv w ocv w s = s | s = ˙ ˙ s
10 df-css ClSubSp = w V s | s = ocv w ocv w s
11 fvex Base W V
12 11 pwex 𝒫 Base W V
13 id s = ˙ ˙ s s = ˙ ˙ s
14 eqid Base W = Base W
15 14 1 ocvss ˙ ˙ s Base W
16 fvex ˙ ˙ s V
17 16 elpw ˙ ˙ s 𝒫 Base W ˙ ˙ s Base W
18 15 17 mpbir ˙ ˙ s 𝒫 Base W
19 13 18 eqeltrdi s = ˙ ˙ s s 𝒫 Base W
20 19 abssi s | s = ˙ ˙ s 𝒫 Base W
21 12 20 ssexi s | s = ˙ ˙ s V
22 9 10 21 fvmpt W V ClSubSp W = s | s = ˙ ˙ s
23 2 22 eqtrid W V C = s | s = ˙ ˙ s
24 3 23 syl W X C = s | s = ˙ ˙ s