Metamath Proof Explorer


Theorem ctbnfien

Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion ctbnfien X ω Y ω A X ¬ A Fin A Y

Proof

Step Hyp Ref Expression
1 isfinite A Fin A ω
2 1 notbii ¬ A Fin ¬ A ω
3 relen Rel
4 3 brrelex1i X ω X V
5 ssdomg X V A X A X
6 4 5 syl X ω A X A X
7 domen2 X ω A X A ω
8 6 7 sylibd X ω A X A ω
9 8 imp X ω A X A ω
10 brdom2 A ω A ω A ω
11 9 10 sylib X ω A X A ω A ω
12 11 adantlr X ω Y ω A X A ω A ω
13 12 ord X ω Y ω A X ¬ A ω A ω
14 2 13 syl5bi X ω Y ω A X ¬ A Fin A ω
15 14 impr X ω Y ω A X ¬ A Fin A ω
16 enen2 Y ω A Y A ω
17 16 ad2antlr X ω Y ω A X ¬ A Fin A Y A ω
18 15 17 mpbird X ω Y ω A X ¬ A Fin A Y