Metamath Proof Explorer


Theorem cu2

Description: The cube of 2 is 8. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion cu2 2 3 = 8

Proof

Step Hyp Ref Expression
1 df-3 3 = 2 + 1
2 1 oveq2i 2 3 = 2 2 + 1
3 2cn 2
4 2nn0 2 0
5 expp1 2 2 0 2 2 + 1 = 2 2 2
6 3 4 5 mp2an 2 2 + 1 = 2 2 2
7 sq2 2 2 = 4
8 7 oveq1i 2 2 2 = 4 2
9 4t2e8 4 2 = 8
10 8 9 eqtri 2 2 2 = 8
11 6 10 eqtri 2 2 + 1 = 8
12 2 11 eqtri 2 3 = 8