Metamath Proof Explorer


Theorem curry1f

Description: Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008)

Ref Expression
Hypothesis curry1.1 G = F 2 nd C × V -1
Assertion curry1f F : A × B D C A G : B D

Proof

Step Hyp Ref Expression
1 curry1.1 G = F 2 nd C × V -1
2 ffn F : A × B D F Fn A × B
3 1 curry1 F Fn A × B C A G = x B C F x
4 2 3 sylan F : A × B D C A G = x B C F x
5 fovrn F : A × B D C A x B C F x D
6 5 3expa F : A × B D C A x B C F x D
7 4 6 fmpt3d F : A × B D C A G : B D