Metamath Proof Explorer


Theorem curry2f

Description: Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008)

Ref Expression
Hypothesis curry2.1 G = F 1 st V × C -1
Assertion curry2f F : A × B D C B G : A D

Proof

Step Hyp Ref Expression
1 curry2.1 G = F 1 st V × C -1
2 ffn F : A × B D F Fn A × B
3 1 curry2 F Fn A × B C B G = x A x F C
4 2 3 sylan F : A × B D C B G = x A x F C
5 fovrn F : A × B D x A C B x F C D
6 5 3com23 F : A × B D C B x A x F C D
7 6 3expa F : A × B D C B x A x F C D
8 4 7 fmpt3d F : A × B D C B G : A D