Metamath Proof Explorer


Theorem cusgr3vnbpr

Description: The neighbors of a vertex in a simple graph with three elements are unordered pairs of the other vertices if and only if the graph is complete. (Contributed by Alexander van der Vekens, 18-Oct-2017) (Revised by AV, 5-Nov-2020)

Ref Expression
Hypotheses cplgr3v.e E = Edg G
cplgr3v.t Vtx G = A B C
cplgr3v.v V = Vtx G
Assertion cusgr3vnbpr A X B Y C Z G USGraph A B A C B C G ComplGraph x V y V z V y G NeighbVtx x = y z

Proof

Step Hyp Ref Expression
1 cplgr3v.e E = Edg G
2 cplgr3v.t Vtx G = A B C
3 cplgr3v.v V = Vtx G
4 usgrupgr G USGraph G UPGraph
5 1 2 cplgr3v A X B Y C Z G UPGraph A B A C B C G ComplGraph A B E B C E C A E
6 4 5 syl3an2 A X B Y C Z G USGraph A B A C B C G ComplGraph A B E B C E C A E
7 simp2 A X B Y C Z G USGraph A B A C B C G USGraph
8 3 2 eqtri V = A B C
9 8 a1i A X B Y C Z G USGraph A B A C B C V = A B C
10 simp1 A X B Y C Z G USGraph A B A C B C A X B Y C Z
11 simp3 A X B Y C Z G USGraph A B A C B C A B A C B C
12 3 1 7 9 10 11 nb3grpr A X B Y C Z G USGraph A B A C B C A B E B C E C A E x V y V z V y G NeighbVtx x = y z
13 6 12 bitrd A X B Y C Z G USGraph A B A C B C G ComplGraph x V y V z V y G NeighbVtx x = y z